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Abstract

In this paper we study gravitational instability of a saline boundary layer formed by evaporation induced upward thro
at the horizontal surface of a porous medium. Van Duijn et al. [P.A.C. Raats, D. Smiles, and A.W. Warrick (Eds.), Enviro
Mechanics – Water, Mass and Energy Transfer in the Biosphere – The Philip Volume, Geophys. Monographs, Vol. 12
ican Geophysical Union, 2002, pp. 155–169], derived stability bounds by means of linear stability analysis and an (im
energy method. These bounds do not coincide, i.e. there exists a subcritical region or stability gap in the system p
space which is due to the asymmetry of the linear part of the perturbation equations. We show that the linear ope
be symmetrized by means of a similarity transformation. For system parameter values in the stability gap, we show
exist initial perturbations for which the linearly stable system exhibits transient growth. We show that transient growth
dependent by considering weighted norms, which are induced by a one-parameter family of similarity transformations
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In this paper we investigate the dynamics of groundwater beneath salt lakes. In particular we study the stabil
equilibrium boundary layer formed by evaporation induced upward throughflow at the horizontal surface of a porous m
Central issue is to quantify the boundary layer stability or its gravitational instability in terms of the system paramete
problem was first introduced by [1,2]. It was later further detailed in [3] where the method of linearised stability a
energy method (with different constraints) were used to establish stability criteria for the boundary layer. Starting point
methods is a nonlinear perturbation equation which has the abstract form

ds

dt
=Ls +N (s)

s(t) ∈H

}
for t > 0, (1)

s(0) = f �,
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wheres denotes the perturbation with respect to some ground state solution, and whereL represents a linear andN a nonlinear
operator. The boundary conditions are grouped in the solution spaceH to which s is said to belong. The energy method us
bothL andN , whereas linear stability analysis is applied to the operatorL only. Both approaches give stability bounds in ter
of the system parameters.

The stability bounds found by [3] do not coincide, i.e. there exists a stability gap which was shown to depend
constraints used in the energy method. One of the first observations regarding the occurrence of stability gaps was
[4–6], and, independently and in a different context, by [7,8] and later by [9]. For a general overview we refer to [10]
authors showed that one of the essential connections between linear and nonlinear theory is the idea of symmetry oflinear
operatorL. Therefore we writeL = Ls +La, whereLs denotes the symmetric andLa the asymmetric part ofL. In particular,
when the nonlinear term satisfies(N (s), s) � 0, where(·,·) denotes an appropriately chosen inner product, usually theL2-inner
product, [9] showed that the nonlinear stability analysis reduces to the study of the spectrum of thesymmetricpart of thelinear
operator. Hence, whenL is symmetric, both methods give similar stability bounds.

The presence of throughflow in the salt lake problem results in a first-order term in the operatorL, implying La �= 0. In
addition, the nonlinear term satisfies(N (s), s) ≡ 0 and hence the theory as developed in [9] is applicable for this case
spectrum ofL does not coincide with the spectrum ofLs and this results in a stability gap.

To quantify this gap and to understand the behaviour of the physical system in this – so-called – subcritical region, a
energy method is needed [9]. One method is to formulate a ‘generalized energy’ by coupling different norms with
coupling parameters, see [11]. The idea is to optimize these coupling parameters to obtain a sharper energy stabil
In some cases it even removes the stability gap. Such energies are introduced on purely heuristic grounds.

An alternative approach, which is followed in this paper, is to use the concept of symmetrizable operators. By this w
thatL may be asymmetric with respect to one inner product, but symmetric with respect to another. This can usually be
by reformulating the original problem in terms of a newly defined quantity. For example, such a new quantity may be
the original quantity multiplied by a weight function. A sufficient condition for which an operatorL is symmetrizable, is tha
there exists an invertible operatorM such thatM−1LM is symmetric. Such an operator defines asimilarity transformation
and the resulting operatorM−1LM is calledsimilar (to L). Besides being symmetric, a similar operator has the impo
property that its spectrum is a subset of the spectrum ofL. Once we have found such an operatorM, we can apply [9]: due
to the symmetry of the similar operator, the linear stability bound coincides with the nonlinear stability bound provid
the nonlinear term satisfies(N (s), s)M � 0 , where(·,·)M := (M−1(·),M−1(·)). Here nonlinear stability is measured in t
energy norm induced by(·,·)M. For other applications of similarity transformations we refer to [10, Sections 4 and 5]. Th
of transformations and the consequences for the stability analysis is also discussed in [12].

The introduction of different inner-products affects the orthogonality of theeigenfunctionsof the (asymmetric) operatorL:
for instance, the eigenfunctions may be non-orthogonal with respect to theL2 inner-product, but orthogonal with respect to
weightedL2 inner-product. This results from the fact that the operator isnonnormal[13]. Due to the non-orthogonality of th
eigenfunctions, nonnormal operators exhibit particular transient behaviour which cannot be captured by linear stability
In other words, the linearly stable but nonnormal system may temporarily move far away from equilibrium before appr
it as t → ∞, while undergoing a considerable (transient) algebraic growth of the energy norm. This is studied by [14] a
by [15]. The concept is that a group of eigenfunctions are nearly linearly dependent so that particular initial disturban
involve large coefficients.

With this mechanism in mind, one could determine the optimal initial condition that produces the largest relative
growth during a certain time period. This is done by [14]. Their variational optimization method relies on the fact tha
initial perturbation can be decomposed into eigenfunctions, i.e. the eigenfunctions form a complete set. For certain
on semi-infinite domains, however, like the Blasius boundary layer [16,17], one can show that there is a finite nu
eigenfunctions corresponding to a discrete point spectrum and that there are solutions that correspond to an uncoun
spectrum. The latter is sometimes referred to as the continuum. In this paper we consider a saline boundary layer
infinite domain for which both spectra occur. It is clear the one can only determine a finite number of discrete eige
and corresponding eigenfunctions. Hence the determination of the optimal initial perturbation via a variational optim
procedure is limited since one should have to incorporate the remaining part of the spectrum, see also [18].

However, it is still possible to find initial perturbations that initiate transient growth. These special perturbations
determined by analysing thenumerical range[13] of the operatorL. The numerical range is the largest eigenvalue of
operatorLs and this eigenvalue is equal to the initial slope of the energy norm [15].

This interpretation has led to general analysis of nonnormal systems that has since been used extensively to u
transient growth in deformation and shear flows. For further references see, for example, [19] and [20].

This paper is organized as follows. In Section 2, we formulate the porous medium flow problem and we introd
equilibrium saline boundary layer as the ground state solution.
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In Section 3 we analyse the spectrum of the linear operator; i.e. we study the linearised perturbation equations
recall some earlier results [3] about the stability bounds: a stability bound resulting from the linear theory and a smalle
resulting from an energy method. Below the latter bound all perturbations decay inL2-sense with respect to time.

In Sections 4 and 5 we consider the behaviour of the linearised perturbation equations for parameter values betw
stability bounds. In Section 4 we demonstrate transient growth of theL2-norm of perturbations and we construct some bou
on this growth. In Section 5 we show that transient growth is norm dependent. In particular we introduce a one-parame
of transformations that imply weightedL2-norms. Depending on the parameter value, transient growth may occur or disa

Conclusions are summarized in Section 6.

2. Problem formulation

Following [3], we consider a homogeneous and uniform isotropic porous medium occupying the three-dimensional h

Ω = {
(x, y, z): (x, y) ∈ R

2, z > 0
}
.

The dimensionless equations in terms of the Boussinesq approximation are given by [21,1]:

• Fluid incompressibility

∇ · U = 0; (2a)

• Darcy’s law

U + ∇P − Sez = 0; (2b)

• Salt transport

∂tS + RsU · ∇S = ∇2S (2c)

in Ω and for allt > 0, subject to the boundary conditions

U · ez = −R−1
s and S = 1 atz = 0, for all t > 0. (3)

HereS denotes salt saturation,U fluid velocity andP an appropriately chosen dimensionless pressure. Further,ez denotes the
unit vector inz-direction, pointing downwards. The system Rayleigh numberRs is given by

Rs = (ρm − ρr )gκ

µE
, (4)

whereµ is fluid viscosity,κ medium permeability,g gravity constant,E evaporation rate,ρm maximum fluid density at the
outflow boundary, andρr fluid density in ‘natural circumstances’ (i.e. far away from the outflow boundary).

To obtain a unique solution satisfying Eqs. (2) and boundary conditions (3), an initial condition is needed:

S|t=0 = f � in Ω, (5)

wheref � denotes the – as yet – unspecified salt saturation at the initial timet = 0.

Remark 1. Note that we no not impose boundary conditions atz = ∞. The behaviour atz = ∞ is implied by the initial
conditionf � and by physically plausible growth conditions for the solutions. This is explained in [22].

2.1. The ground state solution

In this paper we are concerned with the stability of the time-independent solution of (2) and (3) that vanishes at larg
i.e. asz → ∞. This solution is called the ground state. It represents an equilibrium boundary layer below the surfacez = 0,
which is sustained by evaporation induced throughflow. It is explicitly given by the uniform upflow

U = U0 := −R−1
s ez in Ω, (6)

and by the salt saturationS = S0(z) satisfying
d2S0

dz2
+ dS0

dz
= 0, for z > 0,

S (0) = 1, lim S (z) = 0.
0 z→∞ 0
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S0(z) = e−z, z > 0. (7)

The corresponding ground state pressureP = P0 is found by integrating Darcy’s law (2b).

2.2. Perturbation equations

The stability analysis is based on the expansion

S = S0 + s, U = U0 + u, P = P0 + p, (8)

whereu = (u, v,w). Substituting (8) into Eqs. (2) and writingR instead ofRs , yields for the perturbations the system (inΩ

and for allt > 0)

∇ · u = 0, (9a)

u + ∇p − sez = 0, (9b)

∂t s − ∂zs − Re−zw + Ru · ∇s = ∇2s, (9c)

and the homogeneous boundary conditions

s = u · ez = w = 0 atz = 0, for all t > 0. (10)

As in [23] we note that Eqs. (9a) and (9b) can be combined to give fors andw the linear relation

∇2w = ∇2⊥s in Ω. (11)

Here∇2⊥ denotes the horizontal Laplacian∂xx + ∂yy .

3. Linear stability of the equilibrium boundary layer

The stability of the ground state (6), (7) was investigated by [3]. They used linear stability theory, i.e. disregard
product termRu · ∇s in Eq. (9c), and an improved energy method using Eq. (11) as pointwise constraint. Restricted to p
perturbations of the form

{s,w}(x, y, z, t) = {s,w}(z, t)ei(axx+ayy), (12)

whereax anday denote the horizontal wavenumbers, they obtained two stability bounds. Witha2 = a2
x + a2

y , these bounds ar
represented in the(a,R)-plane by the curves

0< RE(a) < RL(a) for a > 0. (13)

The ground state is unstable above the curveRL(a), and definitely stable below the curveRE(a) in the sense that theL2-norm
of any periodic perturbation decays in time when 0< a < ∞ and 0< R < RE(a). The two bounds are shown in Fig. 1.

The main goal of this paper is to understand the behaviour of(x, y)-periodic solutions of the linearized perturbation eq
tions for points(a,R) in between these stability bounds. We start with some observations concerning the spectrum
corresponding eigenfunctions.

3.1. Properties of the spectrum of the linear operator

We consider the linear part of (9c) and (11) inQ := {(z, t): z > 0, t > 0}. Assumingf � = f �(z) and periodicity ofs and
w with respect to the horizontal plane, as in (12), we obtain the equations

(LP)


∂t s = D2s + Ds − a2s + Re−zB(s) =: Ls in Q,

B−1(w) := −a−2D2w + w = s in R+ and for eacht > 0,

w(0, t) = s(0, t) = 0 for all t > 0,

s(z,0) = f (z) for all z > 0.

In (LP) we used the notationD := ∂/∂z or d/dz. Becauses is the perturbation of (7) we havef (z) = f �(z) − e−z. Note that
we do not impose the boundary condition limz→∞ w(z) = 0 to solve thew-problem. This is a consequence of the fact t
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Fig. 1. Stability bounds involving the lowest eigenvalueR = Rmin versus wavenumbera: top curveR = RL(a) results from the linear stability
method, bottom curveR = RE(a) results from the energy method.

s(·, t) ∈ L2(R+), see [22] for details. To investigate the spectrum ofL, we fix a > 0 andR > 0 and consider the eigenvalu
problem

Ls = D2s + Ds − a2s + Re−zB(s) = σs, s ∈ H1
0 (R+). (14)

HereH1
0 (R+) denotes the Hilbert space of square integrable functions having a square integrable derivative and van

z = 0. Since no explicit solutions of (14) are known, we solved the eigenvalue problem numerically by means of a m
Chebyshev–Galerkin method. Details of this method are discussed in [24]. Later on in this section we show by me
similarity transformation that the discrete eigenvalues{σi = σi(a,R)} of (14) are real. Let them be ordered according to

· · · < σn < · · · < σ2 < σ1 =: σmax.

Fora andR in relevant ranges, Fig. 2(A) shows numerically obtained isocurves ofσmax. PuttingR = 0 in (14) gives the explicit
expressionσmax= −a2 − 1

4. This is recovered numerically. Further observe that the isocurves become vertical asR ↘ 0. The
dashed isocurve (corresponding toσmax≡ 0) in Fig. 2(A) is usually referred to as the neutral stability curve. It is often fo
by solving the rewritten eigenvalue problem

Lσ s := D2s + Ds − (a2 + σ)s = −Re−zB(s) =: RBs, (15)

with s ∈ H1
0 (R+), see [3]. In other words, the role ofσ andR as eigenvalues can be interchanged. Suppose again that t

of eigenvalues{Ri = Ri(a,σ )} of problem (15) are ordered byRmin := R1 < R2 < · · · < Rn < · · · . Then the neutral stability
curve is defined byRL(a) := Rmin(a, σ = 0). It is also shown as the top curve in Fig. 1.

In the sequel of this section we investigate the behaviour ofRmin(a, σ ) nearσ = 0. Fig. 2(A) suggests that for fixeda > 0,
at least forσ sufficiently close to zero, we haveσ ≷ 0 if and only if R ≷ Rmin(a, σ = 0) = RL(a). This property is crucial in
linearised stability theory. Its physical interpretation is that the conductive ground state exchanges stability with a co
flow regime. In general, exchange of stability is straightforward to prove when the linear operatorL is symmetric with respect to
L2(R+), see [9]. However, the operatorL (andLσ ) is asymmetric inL2(R+) due to the occurrence of the first order derivati
To show the stability exchange, we will make use of a particular (similarity) transformation which symmetrizes the opeL

in L2(R+). Following [25, Section 5], we set

s(z, t) = Mu(z, t) := e− 1
2zu(z, t). (16)

Then

Ls = e− 1
2z

[
D2u +

(
−1 − a2

)
u + Re− 1

2zB
(
e− 1

2zu
)] =: ML̂M−1s, (17)
4
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Fig. 2. (A) Isocurves of the largest approximate eigenvalueσmax of operatorL. The dashed curveσmax≡ 0 corresponds to the neutral stabili
curveRL(a) (see text for its definition). (B) Upper and lower bounds ofRmin(a, σ ) for a = 0.759 as function of the growthrateσ .

whereL̂ is given by

L̂ = D2 +
(

−1

4
− a2

)
I + Re− 1

2zB
(
e− 1

2z·
)
, (18)

in which I denotes the identity operator. Now we consider the problem

(L̂P)


∂tu = D2u +

(
−1

4
− a2

)
u + Re− 1

2zB
(
e− 1

2zu
) = L̂u,

B−1(w) = −a−2D2w + w = e− 1
2zu,

in Q, with

w(0, t) = u(0, t) = 0 for all t > 0 (19)

and

u(z,0) = g(z) := e
1
2zf (z) for all z > 0. (20)

Note that the operator̂L is symmetric with respect toL2(R+). Clearly, the spectrum of̂L is contained in the spectrum ofL.

In fact, the part of the spectrum ofL for which the eigenfunctions belong to{s ∈ L2(R+): se
1
2z ∈ L2(R+)} coincides with the

spectrum ofL̂ with respect toL2(R+). We are now in a position to prove exchange of stability quite easily by usingL̂ instead
of L. For this purpose we rewrite the eigenvalue problemL̂u = σu, as in (15), in the form

L̂σ u := D2u −
(

a2 + 1

4
+ σ

)
u = RB̂u, (21)

with B̂u := −e− 1
2zB(e− 1

2zu). We prove

Theorem 2. Let the smallest eigenvalue of(21) be denoted byRmin(a, σ ) and suppose that it depends smoothly ona > 0
andσ > −a2 − 1

4 . Then there exist a positive constantc and a smooth functionh : (−a2 − 1
4,∞) 
→ R, satisfyingh(0) = 0,

h(σ) ≷ 0 if σ ≷ 0 andh(σ) � cσ for all σ > −a2 − 1
4 , such that

h(σ) � Rmin(a, σ ) − RL(a) � cσ. (22)

Moreover,h′′(0) < 0.

Proof. First observe that

(B̂u,u) = −(
B

(
e− 1

2zu
)
,e− 1

2zu
) = −(w, s),
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and (w, s) = a−2‖Dw‖2
2 + ‖w‖2

2 > 0. Here (·,·) denotes the usualL2(R+) inner product. Hence(B̂u,u) < 0. Further,

L̂σ = L̂0 − σI whereI denotes the identity operator. SincêLσ and B̂ are self-adjoint, we have the following variation
characterization ofRmin(a, σ ):

0< Rmin(a, σ ) = inf
ū∈H1

0 (R+)

(L̂σ ū, ū)

(B̂ū, ū)
= (L̂σ uσ ,uσ )

(B̂uσ ,uσ )
. (23)

In particular, forσ = 0, we have

0< Rmin(a,0) = inf
ū∈H1

0 (R+)

(L̂0ū, ū)

(B̂ū, ū)
� (L̂0uσ ,uσ )

(B̂uσ ,uσ )
= (L̂σ uσ ,uσ )

(B̂uσ ,uσ )
+ σ

(uσ ,uσ )

(B̂uσ ,uσ )
= Rmin(a, σ ) + σ

‖uσ ‖2
2

(B̂uσ ,uσ )
.

This implies

Rmin(a, σ ) − RL(a) � σ
‖uσ ‖2

2

−(B̂uσ ,uσ )
=: h(σ). (24)

In a similar way we find the upper bound

Rmin(a, σ ) − RL(a) �
‖u0‖2

2

−(B̂u0, u0)
σ =: cσ. (25)

This proves (22) and in particularRmin(a, σ ) ≷ RL(a) for σ ≷ 0. Because(B̂u0, u0) < 0, inequalities (24) and (25) also imp

0<
‖u0‖2

2

−(B̂u0, u0)
= ∂Rmin(a, σ )

∂σ

∣∣∣∣
σ=0

. (26)

DifferentiatingL̂σ uσ = Rmin(a, σ )B̂uσ with respect toσ and settingvσ = duσ /dσ gives

L̂σ vσ − uσ = Rmin(a, σ )B̂vσ + ∂Rmin(a, σ )

∂σ
B̂uσ ,

implying(
L̂σ vσ − Rmin(a, σ )B̂vσ , vσ

) − (uσ , vσ ) = ∂Rmin(a, σ )

∂σ
(B̂uσ , vσ ).

SinceB̂ is self-adjoint inL2(R+), we have

(uσ , vσ ) = 1

2

d

dσ
‖uσ ‖2

2, (B̂uσ , vσ ) = 1

2

d

dσ
(B̂uσ ,uσ ),(

L̂σ vσ − Rmin(a, σ )B̂vσ , vσ

)
< 0,

we thus find

d

dσ
‖uσ ‖2

2 < −∂Rmin(a, σ )

∂σ

d

dσ
(B̂uσ ,uσ ). (27)

Next we definẽh(σ) := −‖uσ ‖2
2/(B̂uσ ,uσ ) such thath(σ) = σ h̃(σ ). Differentiatingh̃(σ ) and using (26) and (27) results in

−(B̂u0, u0)
d

dσ
‖uσ ‖2

2

∣∣∣∣
σ=0

+ ‖u0‖2
2

d

dσ
(B̂uσ ,uσ )

∣∣∣∣
σ=0

< 0,

which immediately implies̃h′(0) < 0. Sinceh′′(σ ) = 2h̃′(σ ) + σ h̃′′(σ ), we findh′′(0) < 0 which proves the second asserti
of the theorem. �

The functionRmin(a, σ ) for a = 0.759 together with the upper and lower bounds are shown in Fig. 2(B). Theorem 2 im
the following. Let the system Rayleigh numberRs be sufficiently close toRL(a). If Rs > RL(a), then there exists aσ > 0
such thatRs = Rmin(a, σ ). In other words, ifRs > RL(a), there exists an infinitesimal perturbation which will grow in tim
implying that the boundary layer is unstable. IfRs < RL(a) no definite statement about stability can be made. Only ce
infinitesimal perturbations now decay. Others, and in particular large perturbations, may still grow in time.
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4. Transient growth behaviour

In this section we investigate the previous statement further. Employing the energy method, one seeks for condition
of the system parameters(a,R) for which a suitable norm – mostly theL2-norm – decays in time. In [3] it is shown that
a > 0 andR < RE(a), see also Fig. 1, then solutions of the linear problem(LP) satisfy

d

dt

∫
R+

s2(z, t)dz < 0 for all t > 0,

providedf ∈ H1
0 (R+). Moreover, this statement holds forperiodic(with respect to the horizontal(x, y)-plane) solutions of the

original nonlinear perturbation equations (9).
To exploit the behaviour whenRE(a) < R < RL(a), we first introduce some notation.

Definition 3. Let s(z, t) be the solution of problem(LP) with f ∈ L2(R+) and let

E(t) :=
∫

R+

s2(z, t)dz =: ∥∥s(t)
∥∥2

2. (28)

(i) The spectral bound of the operatorL is defined by

σ(L) = sup
λ∈Σ(L)

Reλ,

whereΣ(L) denotes the spectrum ofL.
(ii) The numerical range of the operatorL is the set

W(L) = {
(Ls, s): ‖s‖2 = 1

}
.

(iii) A related quantity is the numerical bound ofL, defined by

ω(L) = sup
λ∈W(L)

Reλ. (29)

(iv) For a > 0 andR > 0 let G := {(a,R): ω(L) > 0, σ (L) < 0} denote the stability gap. Clearly,G = {(a,R): a > 0,

RE(a) < R < RL(a)}.

An important property of the numerical range is that the spectrum of the operatorL is contained in the closure of it
numerical range: i.e.Σ(L) ⊂ W(L), see for instance [26]. This implies thatω(L) � σ(L).

From(LP), using Definition 3, we find the relation

1

2
E ′(t) = (Ls, s)

‖s‖2
2

E(t) � ω(L)E(t). (30)

The linear problem is stable with respect to‖·‖2 providedω(L) < 0 and neutral stable whenω(L) ≡ 0. The Euler–Lagrang
equation for the maximum problem (30) is given by

D2s − a2s + 1

2
R

{
e−zB(s) + B(e−zs)

} = ωs, (31)

which we solve fors ∈ H1
0 (R+). Let ωmax be the largest real eigenvalue of (31). Thenω(L) = ωmax. Fig. 3(A) shows the

isocurves ofωmax. Observe that the zero-level curve corresponds toRE(a), see also Fig. 1.
A formal Taylor expansion ofE(t) at t = 0 gives

E(t) = E(0) + E ′(0)t + O(t2).

Now using (30), we haveE ′(0)/E(0) = 2(Lf,f )/‖f ‖2
2, wheref is the initial condition given by(LP)4. Let µ denote the

maximal initial slope ofE(t)/E(0), i.e.

1

2
µ = sup

f̄ ∈H1
0 (R+)

(Lf̄ , f̄ )

‖f̄ ‖2
2

= ω(L) by Definition 3(ii)–(iii).

The initial conditionf that maximizes the initial slope is found by solving the eigenvalue problem

1(
L + L†)

f̃ = 1
µf̃ in H1

0 (R+). (32)

2 2
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s

ted
up-
Fig. 3. (A) Isocurves of the largest eigenvalueωmax of (31). Dashed curve corresponds toRL(a) and dotted curve toRE(a) (= zero level
curve). (B) Transient growth fora = 0.38 andR = 15 (inG) of the scaled ‘energy’. For the dashed curve the initial condition is given byf = f̃

(see(LP)). The initial perturbation for the solid curves is given by a specificf for which e
1
2z

f ∈ L2(R+). The upper bound (34) is shown a
the composition of the dotted lines.

Fig. 4. Evolution of the solution of(LP) with initial perturbationf̃ (z). The corresponding functionalE is depicted in Fig. 3(B) forα = 0.

The ‘energy’E(t) corresponding to the maximal initial growth̃f (z) is shown in Fig. 3(B), dashed curve. The compu
evolution of the initial perturbationf̃ (z) is shown in Fig. 4. The perturbation ‘mass’ is redistributed due to the existing
ward throughflow, implying transient growth ofE(t). Since the system is (linearly) stable, i.e.σ(L) < 0, the perturbation will
eventually decay to zero.

We conclude with some bounds on the growth ofE(t). From(L̂P) and using Definition 3(i) we obtain∥∥u(t)
∥∥2

2 � e2σ(L̂)t‖g‖2
2. (33)

From (33), (16) and using the fact thatσ(L̂) = σ(L), it follows that∥∥s(t)
∥∥2 �

∥∥u(t)
∥∥2 � Ke2σ(L)t‖f ‖2,
2 2 2
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alize

t for
whereK := ‖g‖2
2/‖f ‖2

2. Further, we have the estimate∥∥s(t)
∥∥2

2 � e2ω(L)t‖f ‖2
2,

which follows directly from Definition 3. Combining these two estimates results in the upper bound

E(t)

E(0)
� min

t�0

{
e2ω(L)t ,Ke2σ(L)t

}
, (34)

see also the dotted lines in Fig. 3(B). Note that this upperbound is not sharp.

5. Elimination of transient growth by weighted norms

In Section 3 we showed that the linear operatorL can be symmetrized by transformation (16). In this section we gener
this idea by defining

s(z, t) := e− 1
2αzu(z, t), α ∈ [0,1]. (35)

Substitution of (35) in(LP) gives the problem

(LPα)



∂tu = D2u + (1− α)Du +
(

1

4
α2 − 1

2
α − a2

)
u

+ Re( 1
2α−1)zB

(
e− 1

2αzu
) =: Lαu in Q,

B−1(w) := −a−2D2w + w = e− 1
2αzu in R+, for eacht > 0,

w(0, t) = u(0, t) = 0 for all t > 0,

u(z,0) = g(z) for all z > 0.

Note that e− 1
2αzLαe

1
2αz ≡ L, i.e.Lα is similar toL for eachα ∈ [0,1].

From this point on we redefine the energy functional. Letu(z, t) be a solution of(LPα). Then

E(t) :=
∫

R+

u2(z, t)dz =
∫

R+

s2(z, t)eαz dz,

wheres(z, t) is the solution of(LP). We want to investigate the transient growth of solutions of(LPα) for α ∈ [0,1]. We argue
as in Section 4 to achieve monotonic decay ofE(t) with respect to time. The variational formulation based onLα yields the
eigenvalue problem

D2u +
(

1

4
α2 − 1

2
α − a2

)
u = −1

2
R

{
e( 1

2α−1)zB
(
e− 1

2αzu
) + e− 1

2αzB
(
e( 1

2α−1)zu
)}

, (36)

for u ∈ H1
0 (R+). For givena > 0 andα ∈ [0,1], let RE(a;α) be the smallest positive eigenvalue of (36). Observe tha

α = 1 we regain eigenvalue problem (21) withσ = 0, i.e. neutral stability. Therefore,RE(a;1) = RL(a). Forα = 0, eigenvalue
problem (36) reduces to the one discussed in [3] and henceRE(a;0) = RE(a). The stability curvesR = R(a;α) for a > 0 and
for fixedα ∈ [0,1] are shown in Fig. 5, see also Fig. 1. They are ordered in the following sense.

Proposition 4. For anyα ∈ [0,1) we haveRE(a;α) < RL(a) for all a > 0.

Proof. Let a > 0 be fixed and let(s1,w1,RL(a)) be the first eigensolution of the problem (inR+){
D2s1 + Ds1 − a2s1 = −RL(a)e−zw1,

−D2w1 + a2w1 = a2s1,

(37a)

(37b)

with s,w ∈ H1
0 (R+). Next sets1 = e− 1

2αzu1. Substitution in (37) yields D2u1 + (1− α)Du1 +
(

1

4
α2 − 1

2
α − a2

)
u1 = −RL(a)e( 1

2α−1)zw1,

−D2w1 + a2w1 = a2u1e− 1
2αz.

(38a)

(38b)



G.J.M. Pieters, C.J. van Duijn / European Journal of Mechanics B/Fluids 25 (2006) 83–94 93

).

e
.
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upward
hed. The
rum of the
Fig. 5. Lowest eigenvalueRE(a;α), for variousα ∈ [0,1], versus wavenumbera > 0 for the equilibrium boundary layer (cf. Proposition 4
Bold solid curve (α = 0) and bold dashed curve (α = 1) are taken from Fig. 1. The dashed curve corresponds toα = β ∈ (0,1).

Multiplying (38a) byu1 and integrating overR+ gives forα ∈ [0,1)

1

RL(a)
= (e( 1

2α−1)zw1, u1)

‖Du1‖2
2 − (1

4α2 − 1
2α − a2)‖u1‖2

2

.

From this we immediately derive

1

RE(a;α)
>

1

RL(a)
,

for all a > 0. �
The curves in Fig. 5 have the following interpretation. The operatorLα , defined in equation(LPα)1, is self-adjoint (and

hence normal) forα = 1. For this particular case we findRE(a;1) = RL(a) for all a > 0, see Section 4. Forα ∈ [0,1) we have
RE(a;α) < RL(a) for all a > 0, i.e. there exists a stability gap. Now let the system Rayleigh numberRs be such that for som
a > 0 it satisfiesRE(a) < Rs < RL(a). Then there exists a uniqueβ ∈ (0,1) such thatRE(a,β) = Rs , see Fig. 5, dotted curve
Then the described construction implies that for eachα ∈ (β,1) we have

d

dt

∫
R+

s2(z, t)eαz dz < 0 provided
∫

R+

f 2(z)eαz dz < ∞.

For fixed (a,R) ∈ G we solved(LP). The initial conditionf is chosen in such a way that
∫
R+ f 2(z)ez dz < ∞. The

behaviour ofE(t)/E(0) is shown in Fig. 3(B). The maximal initial growth ofE(t)/E(0) is obtained forα = 0. For increasing
α, the initial slope decreases and becomes negative. This is also to be expected since for someβ ∈ (0,1) the pair (a,R)

lies under the stability curveRE(a,β), i.e. the numerical bound becomes negative, see Fig. 5. From this we conclud∫
R+ s2(z, t)eαz dz exhibits transient growth forα ∈ (0, β).

6. Discussion

In [3] we introduced and studied gravitational instability of a saline boundary layer formed by evaporation induced
throughflow at the horizontal surface of a porous medium. In that study several important questions remained untouc
purpose of the present paper is to resolve these questions. In particular, we present a complete picture of the spect
linearised problem and we prove exchange of stabilities by introducing a similar self-adjoint operator.
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Because of the evaporation induced convection, the linearised perturbation equations are non-self-adjoint. This res
appearance of a stability gap, i.e. the linear instability bound does not coincide with the energy stability bound. By usi
similar operators, and thereby introducing weighted norms in the energy method, we show that these bounds coincide
perturbations.

The stability gap usually suggests the existence of subcriticalfinite amplitude solutions, i.e. nontrivial solutions that ex
for Rayleigh numbers below the critical linear instability threshold. The existence of such solutions is shown by Pie
Schuttelaars, [27]. These authors describe a fairly complete bifurcation analysis of the problem discussed in this p
existence of subcritical solutions, however, does not contradict the coinciding stability thresholds since we donot incorporate
finiteamplitude nonlinear interactions in our approach. To be more precisely, for finite amplitude steady solutions we g
have(N (s), s)M �= 0.
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