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Abstract

In this paper we study gravitational instability of a saline boundary layer formed by evaporation induced upward throughflow
at the horizontal surface of a porous medium. Van Duijn et al. [P.A.C. Raats, D. Smiles, and A.W. Warrick (Eds.), Environmental
Mechanics — Water, Mass and Energy Transfer in the Biosphere — The Philip Volume, Geophys. Monographs, Vol. 129, Amer-
ican Geophysical Union, 2002, pp. 155-169], derived stability bounds by means of linear stability analysis and an (improved)
energy method. These bounds do not coincide, i.e. there exists a subcritical region or stability gap in the system parameter
space which is due to the asymmetry of the linear part of the perturbation equations. We show that the linear operator can
be symmetrized by means of a similarity transformation. For system parameter values in the stability gap, we show that there
exist initial perturbations for which the linearly stable system exhibits transient growth. We show that transient growth is norm
dependent by considering weighted norms, which are induced by a one-parameter family of similarity transformations.
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1. Introduction

In this paper we investigate the dynamics of groundwater beneath salt lakes. In particular we study the stability of an
equilibrium boundary layer formed by evaporation induced upward throughflow at the horizontal surface of a porous medium.
Central issue is to quantify the boundary layer stability or its gravitational instability in terms of the system parameters. This
problem was first introduced by [1,2]. It was later further detailed in [3] where the method of linearised stability and the
energy method (with different constraints) were used to establish stability criteria for the boundary layer. Starting point for both
methods is a nonlinear perturbation equation which has the abstract form

ds

3 =Ls+N© | o4 >0, :
s(tyeH
s(0) = f*,
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wheres denotes the perturbation with respect to some ground state solution, anddviegnesents a linear aod a nonlinear
operator. The boundary conditions are grouped in the solution Sgaocewhich s is said to belong. The energy method uses
both £ and/, whereas linear stability analysis is applied to the operétonly. Both approaches give stability bounds in terms
of the system parameters.

The stability bounds found by [3] do not coincide, i.e. there exists a stability gap which was shown to depend on the
constraints used in the energy method. One of the first observations regarding the occurrence of stability gaps was given by
[4-6], and, independently and in a different context, by [7,8] and later by [9]. For a general overview we refer to [10]. These
authors showed that one of the essential connections between linear and nonlinear theory is the idea of symmiatisaof the
operatorL. Therefore we writel = Ls+ L3, WhereLs denotes the symmetric anty the asymmetric part of. In particular,
when the nonlinear term satisfie& (s), s) < 0, where(-,-) denotes an appropriately chosen inner product, usually #Hener
product, [9] showed that the nonlinear stability analysis reduces to the study of the spectrursyoifithetrigpart of thelinear
operator. Hence, whefi is symmetric, both methods give similar stability bounds.

The presence of throughflow in the salt lake problem results in a first-order term in the op&ratglying L3 # 0. In
addition, the nonlinear term satisfied/(s), s) = 0 and hence the theory as developed in [9] is applicable for this case: The
spectrum of£ does not coincide with the spectrum©§ and this results in a stability gap.

To quantify this gap and to understand the behaviour of the physical system in this — so-called — subcritical region, a modified
energy method is needed [9]. One method is to formulate a ‘generalized energy’ by coupling different norms with suitable
coupling parameters, see [11]. The idea is to optimize these coupling parameters to obtain a sharper energy stability bound
In some cases it even removes the stability gap. Such energies are introduced on purely heuristic grounds.

An alternative approach, which is followed in this paper, is to use the concept of symmetrizable operators. By this we mean
that£ may be asymmetric with respect to one inner product, but symmetric with respect to another. This can usually be achieved
by reformulating the original problem in terms of a newly defined quantity. For example, such a new quantity may be equal to
the original quantity multiplied by a weight function. A sufficient condition for which an operétisrsymmetrizable, is that
there exists an invertible operatart such thatM—1£.M is symmetric. Such an operator definesimilarity transformation
and the resulting operatovi—1£M is calledsimilar (to £). Besides being symmetric, a similar operator has the important
property that its spectrum is a subset of the spectrumi.ddnce we have found such an operatdr, we can apply [9]: due
to the symmetry of the similar operator, the linear stability bound coincides with the nonlinear stability bound provided that
the nonlinear term satisfig€d/(s), s) o < 0, where(-,) o := ML), M~1()). Here nonlinear stability is measured in the
energy norm induced by, -) 4. For other applications of similarity transformations we refer to [10, Sections 4 and 5]. The use
of transformations and the consequences for the stability analysis is also discussed in [12].

The introduction of different inner-products affects the orthogonality okfgenfunction®f the (asymmetric) operatat:
for instance, the eigenfunctions may be non-orthogonal with respect Izbzti'rmer-product, but orthogonal with respect to a
WeightedL2 inner-product. This results from the fact that the operatooisnormal[13]. Due to the non-orthogonality of the
eigenfunctions, nonnormal operators exhibit particular transient behaviour which cannot be captured by linear stability analysis.
In other words, the linearly stable but nonnormal system may temporarily move far away from equilibrium before approaching
it ast — oo, while undergoing a considerable (transient) algebraic growth of the energy norm. This is studied by [14] and later
by [15]. The concept is that a group of eigenfunctions are nearly linearly dependent so that particular initial disturbances may
involve large coefficients.

With this mechanism in mind, one could determine the optimal initial condition that produces the largest relative energy
growth during a certain time period. This is done by [14]. Their variational optimization method relies on the fact that every
initial perturbation can be decomposed into eigenfunctions, i.e. the eigenfunctions form a complete set. For certain problems
on semi-infinite domains, however, like the Blasius boundary layer [16,17], one can show that there is a finite number of
eigenfunctions corresponding to a discrete point spectrum and that there are solutions that correspond to an uncountable poir
spectrum. The latter is sometimes referred to as the continuum. In this paper we consider a saline boundary layer in a semi-
infinite domain for which both spectra occur. It is clear the one can only determine a finite number of discrete eigenvalues
and corresponding eigenfunctions. Hence the determination of the optimal initial perturbation via a variational optimization
procedure is limited since one should have to incorporate the remaining part of the spectrum, see also [18].

However, it is still possible to find initial perturbations that initiate transient growth. These special perturbations can be
determined by analysing theumerical range[13] of the operatorZ. The numerical range is the largest eigenvalue of the
operatorLs and this eigenvalue is equal to the initial slope of the energy norm [15].

This interpretation has led to general analysis of nonnormal systems that has since been used extensively to understani
transient growth in deformation and shear flows. For further references see, for example, [19] and [20].

This paper is organized as follows. In Section 2, we formulate the porous medium flow problem and we introduce the
equilibrium saline boundary layer as the ground state solution.
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In Section 3 we analyse the spectrum of the linear operator; i.e. we study the linearised perturbation equations. We also
recall some earlier results [3] about the stability bounds: a stability bound resulting from the linear theory and a smaller bound
resulting from an energy method. Below the latter bound all perturbations de;tzi’ysianse with respect to time.

In Sections 4 and 5 we consider the behaviour of the linearised perturbation equations for parameter values between these
stability bounds. In Section 4 we demonstrate transient growth of fheorm of perturbations and we construct some bounds
on this growth. In Section 5 we show that transient growth is norm dependent. In particular we introduce a one-parameter family
of transformations that imply weighteldz-norms. Depending on the parameter value, transient growth may occur or disappear.

Conclusions are summarized in Section 6.

2. Problem formulation

Following [3], we consider a homogeneous and uniform isotropic porous medium occupying the three-dimensional halfspace
2={(x,y.2: (x,y eR? 7> 0}.

The dimensionless equations in terms of the Boussinesq approximation are given by [21,1]:

e Fluid incompressibility

V-U=0; (2a)
e Darcy’s law
U+VP—Se =0; (2b)

e Salt transport
%S+ RyU- VS =V2s§ (2c)

in £2 and for allz > 0, subject to the boundary conditions
U-eZ=—RS_1 and S=1 atz=0,forallz>0. 3)

Here S denotes salt saturatiob, fluid velocity andP an appropriately chosen dimensionless pressure. Fughdenotes the
unit vector inz-direction, pointing downwards. The system Rayleigh nuneis given by

Ry = (om — pr)gx i 4)
nE

wherep is fluid viscosity,x medium permeabilityg gravity constantE evaporation ratep,, maximum fluid density at the

outflow boundary, an@, fluid density in ‘natural circumstances’ (i.e. far away from the outflow boundary).

To obtain a unique solution satisfying Egs. (2) and boundary conditions (3), an initial condition is needed:
Sli=o=f* ing, )
where f* denotes the — as yet — unspecified salt saturation at the initiak tiae

Remark 1. Note that we no not impose boundary conditiong at co. The behaviour at = oo is implied by the initial
condition f* and by physically plausible growth conditions for the solutions. This is explained in [22].

2.1. The ground state solution

In this paper we are concerned with the stability of the time-independent solution of (2) and (3) that vanishes at large depth,
i.e. asz — oo. This solution is called the ground state. It represents an equilibrium boundary layer below the sutface
which is sustained by evaporation induced throughflow. It is explicitly given by the uniform upflow

U=Ug:=—R; e, ing, (6)
and by the salt saturatioh= Sp(z) satisfying
d250 dSp
—+—=0, for 0,
dz2 + dz £z

So(0) =1, lim;_ o0 So(z) =0.
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Clearly,
Soz)=¢€"%, z>0. (7)

The corresponding ground state pressBre Py is found by integrating Darcy'’s law (2b).
2.2. Perturbation equations

The stability analysis is based on the expansion
§=S0+s, U=Up+u, P=PF+p, ®)

whereu = (u, v, w). Substituting (8) into Egs. (2) and writing instead ofRy, yields for the perturbations the system {in
and for allz > 0)

V.-u=0, (9a)
u+Vp—se =0, (9b)
s —d.s — Re “w + Ru - Vs = Vs, (9¢)

and the homogeneous boundary conditions

s=u-e,=w=0 atz=0,foralls>0. (10)
As in [23] we note that Egs. (9a) and (9b) can be combined to give &mdw the linear relation

V2w =v2s inQ. (11)

HereVi denotes the horizontal Laplaciag, + dyy.

3. Linear stability of the equilibrium boundary layer

The stability of the ground state (6), (7) was investigated by [3]. They used linear stability theory, i.e. disregarding the
product termRu - Vs in Eq. (9¢), and an improved energy method using Eqg. (11) as pointwise constraint. Restricted to periodic
perturbations of the form

s, wYCx, y, 2, 1) = {s, w}(z, ))& @X TV, (12)

wherea, anda, denote the horizontal wavenumbers, they obtained two stability boundsd@\/&ﬂuf + a%, these bounds are
represented in thé:, R)-plane by the curves

O< Rg(a) < Rp(a) fora=>O0. (13)

The ground state is unstable above the cuty&a), and definitely stable below the cur®g; (a) in the sense that the2-norm
of any periodic perturbation decays in time wher @ < oo and O< R < Rg(a). The two bounds are shown in Fig. 1.

The main goal of this paper is to understand the behavior of)-periodic solutions of the linearized perturbation equa-
tions for points(a, R) in between these stability bounds. We start with some observations concerning the spectrum and the
corresponding eigenfunctions.

3.1. Properties of the spectrum of the linear operator

We consider the linear part of (9c) and (11)n:= {(z,7): z > 0, t > 0}. Assumingf* = f*(z) and periodicity ofs and
w with respect to the horizontal plane, as in (12), we obtain the equations

s = D% + Ds —a®s + Re *B(s)=:Ls in Q,

(LP) B lw):=—-a"?D*w+w=s in R4 and for each > O,
w(0,1) =5(0,r) =0 forallr > 0,
5(z,0)= f(2) forall z > 0.

In (LP) we used the notatioP := 3/dz or d/dz. Because is the perturbation of (7) we havg(z) = f*(z) — € *. Note that
we do not impose the boundary condition Jims, w(z) = 0 to solve thew-problem. This is a consequence of the fact that
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Fig. 1. Stability bounds involving the lowest eigenvalRe= Ry, versus wavenumber: top curveR = Rj (a) results from the linear stability
method, bottom curv® = R (a) results from the energy method.

s(-,1) € L2(R+), see [22] for details. To investigate the spectruniofve fix a > 0 andR > 0 and consider the eigenvalue
problem

Ls= D%+ Ds —a’s+ Re*B(s) =05, se¢ H(:)I'(R+). (14)

HereH&(RJr) denotes the Hilbert space of square integrable functions having a square integrable derivative and vanishing at
z = 0. Since no explicit solutions of (14) are known, we solved the eigenvalue problem numerically by means of a modified
Chebyshev—Galerkin method. Details of this method are discussed in [24]. Later on in this section we show by means of a
similarity transformation that the discrete eigenval(tes= o; (a, R)} of (14) are real. Let them be ordered according to

cee<op <--- <02 <01 =!0Omax

Fora andR in relevant ranges, Fig. 2(A) shows numerically obtained isocurveggf. PuttingR = 0 in (14) gives the explicit
expressiommax= —a? — %1. This is recovered numerically. Further observe that the isocurves become vertical & The
dashed isocurve (correspondingat@ax = 0) in Fig. 2(A) is usually referred to as the neutral stability curve. It is often found
by solving the rewritten eigenvalue problem

Lgs = D% + Ds — (a® +o)s = —Re *B(s) =: RBs, (15)

with s € H&(R+), see [3]. In other words, the role efand R as eigenvalues can be interchanged. Suppose again that the set
of eigenvaluegR; = R;(a, o)} of problem (15) are ordered tBmin := R1 < R2 < --- < R, < ---. Then the neutral stability
curve is defined byR; (a) := Rmin(a, o = 0). It is also shown as the top curve in Fig. 1.

In the sequel of this section we investigate the behaviowtgf(a, o) nearo = 0. Fig. 2(A) suggests that for fixad> 0,
at least foro sufficiently close to zero, we have= 0 if and only if R Z Rmin(a, 0 =0) = Ry (a). This property is crucial in
linearised stability theory. Its physical interpretation is that the conductive ground state exchanges stability with a convective
flow regime. In general, exchange of stability is straightforward to prove when the linear opeisymmetric with respect to
L2(R+), see [9]. However, the operatbr(and.L ) is asymmetric irLZ(Hh) due to the occurrence of the first order derivative.
To show the stability exchange, we will make use of a particular (similarity) transformation which symmetrizes the dperator
in L2(R+). Following [25, Section 5], we set

s(z, 1) =Mu(z,t) = e_%zu(z,t). (16)
Then

1 1 1 1 A
Ls=e % [Dzu + <_Z - az)u + Re_?zB(e_?zu)] = MLM™Ls, 17)



88 G.J.M. Pieters, C.J. van Duijn / European Journal of Mechanics B/Fluids 25 (2006) 83—94

25

® =
: /':>
I P
20» . H 1 /»/
|
|
:
ISp e L b
- g ' R in(@,0) = 14.35
54 I
10} A :
g |
2/ !
4 / |
5 S O
1 |
- o / I
il / i / ! / 4 | '
i : '
0 0 —_—
0 3 1/2> 06 02 0 02 06 1

Fig. 2. (A) Isocurves of the largest approximate eigenvalygy of operatorL. The dashed curveémax = 0 corresponds to the neutral stability
curve Ry (a) (see text for its definition). (B) Upper and lower boundstgfi,(a, o) for a = 0.759 as function of the growthrate

wherel is given by

~ 1 1 1

L=p24 (=g -a?)1+ Re Bp(e k), (18)
in which I denotes the identity operator. Now we consider the problem

1 1 1
ru = D%+ <_£_1 —a2>u + Re_?ZB(e_?Zu) =Lu,

(CP)
B Lw) = —a ?D?wtw= ef%zu,
in 0, with
w(0,t) =u(0,r)=0 forallzr>0 (29)
and
w(z,00= g(z) ;= €37 f(z) forallz>0. (20)

Note that the operatdE is symmetric with respect tﬂz(R+). Clearly, the spectrum ot is contained in the spectrum @éf.
In fact, the part of the spectrum éffor which the eigenfunctions belong te € L2(R+) se2z L2(R+)} coincides with the

spectrum ofL with respect toLZ(R+) We are now in a posmon to prove exchange of stability quite easily by Usingtead
of L. For this purpose we rewrite the eigenvalue problemm= ou, as in (15), in the form
o 1 N
Lou:= D%u — <a2+‘—1+0)u=R£u, (21)

o 1 1
with Bu := —e~ 22 B(e” 2%u). We prove

Theorem 2. Let the smallest eigenvalue ¢21) be denoted byRmin(a, o) and suppose that it depends smoothlyaon 0

ando > —a? — %1. Then there exist a positive constanand a smooth functioh : (—a2 -1 00) — R, satisfyingh(0) =
h(o) 20if o Z0andh(o) < co forall o > —a? - 4, such that
h(0) < Rmin(a, 0) — Ry (a) < co. (22)

Moreover,h” (0) < 0.

Proof. First observe that

(Bu,u) = —(B(e_%zu), e_%zu) =—(w,s),
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and (w, s) = a’2||Dw||§ + ||w||% > 0. Here(-,-) denotes the ususz(R+) inner product. Henc&®Bu, u) < 0. Further,

L5 = Lo — oI wherel denotes the identity operator. Sinds and 8 are self-adjoint, we have the following variational
characterization oRmpin(a, 0):

(Loit, i) (Lottg,uo)

0 < Rmin(a, o) = inf ~ =— . (23)
m aeHi®Ry) (Bi.0)  (Bug.ug)
In particular, foro =0, we have
A A A 2
L L L
0<Rpn@. 0= inf (L0 (Lououe)  (Louguo) | (ouug) oo oo Mually
IZEH&(RJJ (B, i) (Bug, ug) (Bug,uq) (Bug,us) (Bug,us)
This implies
lug 113
Rmin(a,0) — Rp(a) 2 0 ———=— =t h(0). (24)
—(Bug, uo)
In a similar way we find the upper bound
luoll3
Rmin(a,0) — Ry (@) < ——=—0 =:co. (25)
—(Buo, up)

This proves (22) and in particul®min(a, o) = Ry (a) foro = 0. Becausé€Bug, ug) < 0, inequalities (24) and (25) also imply

2
u 0 Rmi
0< ||A oll5 _ min(a, o) ) (26)
—(Bug, ug) do 0=0
Differentiating £ us = Rmin(a, o) Bu, with respect tar and setting), = du, /do gives
. . Rmin(a, o)
Love — iy = Rmin(a, o) Buy + %ma,
implying
A N ORmin(a,o) «
(Lo ve — Rmin(a, 0)Bvg, Vo) — (o, vo) = %(o@um Vo )-
Since is self-adjoint inL2(R ), we have
1 ) , 1d -
(ua,va)=§£||ua||2, (‘Bumva):é@(gguo,”a),
(oéova — Rnmin(a, U)a'évav Uo) <0,
we thus find
ORmin(a, o) d 4
o3 < = M) By ). @7)
Next we defingi (o) := —||ug [|3/(Bus . us) such thati(o) = o (o). Differentiating/ (o) and using (26) and (27) results in

, d.
—(Buo. uo) o~ llus 3

d .
+ ol (Bus.ug)| <0,
0 4 o=0
which immediately implieg’ (0) < 0. Sinceh” (o) = 2/ (¢') + ah” (o), we findh” (0) < 0 which proves the second assertion
of the theorem. O

The functionRmin(a, o) for a = 0.759 together with the upper and lower bounds are shown in Fig. 2(B). Theorem 2 implies
the following. Let the system Rayleigh numbRy be sufficiently close taR; (a). If Ry > Ry (a), then there exists a > 0
such thatRy = Rmin(a, o). In other words, ifRy > Ry (a), there exists an infinitesimal perturbation which will grow in time,
implying that the boundary layer is unstable.Rf < R; (a) no definite statement about stability can be made. Only certain
infinitesimal perturbations now decay. Others, and in particular large perturbations, may still grow in time.
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4. Transient growth behaviour

In this section we investigate the previous statement further. Employing the energy method, one seeks for conditions in terms
of the system paramete(s, R) for which a suitable norm — mostly the?-norm — decays in time. In [3] it is shown that if
a > 0andR < Rg(a), see also Fig. 1, then solutions of the linear prob{&m) satisfy

d
o / sz(z, Hdz <0 forallz > 0,
Ry
providedf e H&(R+). Moreover, this statement holds feeriodic (with respect to the horizonték, y)-plane) solutions of the

original nonlinear perturbation equations (9).
To exploit the behaviour wheRg (@) < R < Ry (a), we first introduce some notation.

Definition 3. Let s(z, #) be the solution of problenLP) with f € L2(R+) and let

110) :=/s2(z,t)dz = |s®)5: (28)
Ry

(i) The spectral bound of the operatbiis defined by

o(L)y= sup Rea,
reX(L)

where X (L) denotes the spectrum @f
(i) The numerical range of the operatbris the set
W(L) = {(Ls,s): Isl2=1}.
(i) A related quantity is the numerical bound bf defined by

w(L)= sup Rea. (29)
reW (L)

(iv) Fora >0 andR > 0 let G := {(a, R): w(L) > 0, o(L) < 0} denote the stability gap. Clearlg = {(a, R): a >0,
Rg(a) < R < Rp(a)}.

An important property of the numerical range is that the spectrum of the opdtaticontained in the closure of its
numerical range: i.eX' (L) C W (L), see for instance [26]. This implies thatL) > o (L).
From (LP), using Definition 3, we find the relation

Loy = (LS’;) €(t) < w(L)E(®). (30)
2 15112

The linear problem is stable with respect|ftdio> providedw (L) < 0 and neutral stable when(L) = 0. The Euler-Lagrange
equation for the maximum problem (30) is given by

1
D25 —a?s + ER{e_ZB(s) + B(e_zs)} = ws, (32)

which we solve fors € Hol(RJr). Let wmax be the largest real eigenvalue of (31). The@L) = wmax. Fig. 3(A) shows the
isocurves otvmax. Observe that the zero-level curve correspondB tda), see also Fig. 1.
A formal Taylor expansion of (¢) att = O gives

&(t) = €(0) + &'(0)t + O(12).

Now using (30), we have&’(0)/&(0) = 2(Lf, f)/||f||%, where f is the initial condition given byLP)4. Let © denote the
maximal initial slope o (r)/&(0), i.e.

(i f)_
Fenim,) If15

%u - w(L) by Definition 3(ii)—ii).

The initial conditionf that maximizes the initial slope is found by solving the eigenvalue problem
1

I
E(L—I—LT)f:Euf in H}(R4). (32)
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Fig. 3. (A) Isocurves of the largest eigenvalugax of (31). Dashed curve correspondsRg (a) and dotted curve t&R g (a) (= zero Ievgl
curve). (B) Transient growth far = 0.38 andR = 15 (in G) of the scaled ‘energy’. For the dashed curve the initial condition is givefi Byf

1
(see(LP)). The initial perturbation for the solid curves is given by a spegifior which e2° f ¢ LZ(R+). The upper bound (34) is shown as

the composition of the dotted lines.
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Fig. 4. Evolution of the solution ofLP) with initial perturbationf (z). The corresponding functionalis depicted in Fig. 3(B) for = 0.

The ‘energy’€(r) corresponding to the maximal initial growtfi(z) is shown in Fig. 3(B), dashed curve. The computed
evolution of the initial perturbatiorf (z) is shown in Fig. 4. The perturbation ‘mass’ is redistributed due to the existing up-
ward throughflow, implying transient growth &f(r). Since the system is (linearly) stable, iogL) < 0, the perturbation will

eventually decay to zero.
We conclude with some bounds on the growtl€of). From (LP) and using Definition 3(i) we obtain

) .
|un)]5 <P gl3.
From (33), (16) and using the fact thatL) = o (L), it follows that

ls@)]5 < Ju)|5 < K7 P11,

(33)
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wherek := ||g|3/I| f1|3. Further, we have the estimate

[s@)]5 <D 115,

which follows directly from Definition 3. Combining these two estimates results in the upper bound

€M) _ 2oL 2oLy
8(0)<g8{e2“’ , ke Dy (34)

see also the dotted lines in Fig. 3(B). Note that this upperbound is not sharp.

5. Elimination of transient growth by weighted norms

In Section 3 we showed that the linear operdtaran be symmetrized by transformation (16). In this section we generalize
this idea by defining

s(z,1) = e_%‘“u(z, 1, a€l0,1]. (35)
Substitution of (35) in(LP) gives the problem

1 1
oru = D%y + (1—a)Du + (Zaz — Ea — a2>u
1 1
+ Re2* DB (e72%u) =: Lou in Q,

LP, 1
(LPa) B lw):=—a2D%w +w =62y in Ry, for eacht > 0,

w(0,t) =u(0,r) =0 foralls > 0O,

u(z,0) =g(2) forall z > 0.

1 1
Note that € 2%°L,e2%* =L, i.e. L is similar toL for eacha € [0, 1].
From this point on we redefine the energy functional. k@t ¢) be a solution of LPy). Then

&(t) :=/uz(z,t)dz:fsz(z,t)eazdz,
Ry Ry

wheres(z, t) is the solution of LP). We want to investigate the transient growth of solution&l.&%,) for « € [0, 1]. We argue
as in Section 4 to achieve monotonic decayeof) with respect to time. The variational formulation basedlgnyields the
eigenvalue problem

D%t <%a2 e a2>u = S R{eEe g (e i) 4 e der p(ede D)), (36)

foru e H&(R.ﬁ,—). For givena > 0 anda € [0, 1], let Rg(a; o) be the smallest positive eigenvalue of (36). Observe that for
« = 1 we regain eigenvalue problem (21) with= 0, i.e. neutral stability. Therefor&g (a; 1) = Ry (a). Fora = 0, eigenvalue
problem (36) reduces to the one discussed in [3] and h&pge; 0) = Rg (a). The stability curve®R = R(a; «) fora > 0 and

for fixed o € [0, 1] are shown in Fig. 5, see also Fig. 1. They are ordered in the following sense.

Proposition 4. For anya € [0, 1) we haveRg (a; @) < Ry (a) for all a > 0.

Proof. Leta > 0 be fixed and letsq, w1, Ry, (a)) be the first eigensolution of the problem {i.)
D251 + Dsq — a®s1 = —Ry (a) € 2wy, (37a)
—D2w1 + azwl = azsl, (37b)

1
with s, w € H}(Ry). Next sets; = e 2*%u1. Substitution in (37) yields

1 1 1
D2u1 + (1 —a)Duy + (Zaz — Ea — az)ul =—Ry(a) e(Z“_l)Zwl, (38a)

1
2u167?az. (38b)

—D2w1 + a2w1 =a
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Fig. 5. Lowest eigenvalu® g (a; «), for variousw € [0, 1], versus wavenumber > O for the equilibrium boundary layer (cf. Proposition 4).
Bold solid curve ¢ = 0) and bold dashed curve & 1) are taken from Fig. 1. The dashed curve correspondsg € (0, 1).

Multiplying (38a) byu4 and integrating oveR gives fora € [0, 1)
1 (€2% D2y, ug)
RL@) | Dup|3 - (Go? — S — a?)llu1ll3

From this we immediately derive

1 1
- .-
Rg(a;a)  Rp(a)
foralla>0. O

The curves in Fig. 5 have the following interpretation. The operatgrdefined in equatioriLPy )1, is self-adjoint (and
hence normal) fow = 1. For this particular case we firRig (a; 1) = Ry (a) for all a > 0, see Section 4. Fer € [0, 1) we have
RE(a; @) < Ry (a) for all a > 0, i.e. there exists a stability gap. Now let the system Rayleigh nuipbe such that for some
a > O itsatisfiesRg (a) < Ry < Ry (a). Then there exists a unigulec (0, 1) such thatRg (a, B) = Ry, see Fig. 5, dotted curve.
Then the described construction implies that for eaeh(8, 1) we have

%/sz(z,t) €**dz <0 provided /fz(z) e** dz < oo.
R, R,

For fixed (a, R) € G we solved(LP). The initial condition f is chosen in such a way th, f2(z) € dz < o0. The
behaviour of¢(r) /& (0) is shown in Fig. 3(B). The maximal initial growth &f(¢)/&(0) is obtained Jfora = 0. For increasing
«a, the initial slope decreases and becomes negative. This is also to be expected since féres@né) the pair (a, R)
lies under the stability curv&g (a, B), i.e. the numerical bound becomes negative, see Fig. 5. From this we conclude that
fR+ 52(z, t) €% dz exhibits transient growth far € (0, B).

6. Discussion

In [3] we introduced and studied gravitational instability of a saline boundary layer formed by evaporation induced upward
throughflow at the horizontal surface of a porous medium. In that study several important questions remained untouched. The
purpose of the present paper is to resolve these questions. In particular, we present a complete picture of the spectrum of the
linearised problem and we prove exchange of stabilities by introducing a similar self-adjoint operator.
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Because of the evaporation induced convection, the linearised perturbation equations are non-self-adjoint. This results in the
appearance of a stability gap, i.e. the linear instability bound does not coincide with the energy stability bound. By using again
similar operators, and thereby introducing weighted norms in the energy method, we show that these bounds coincide for small
perturbations.

The stability gap usually suggests the existence of subcrititiéd amplitude solutions, i.e. nontrivial solutions that exist
for Rayleigh numbers below the critical linear instability threshold. The existence of such solutions is shown by Pieters and
Schuttelaars, [27]. These authors describe a fairly complete bifurcation analysis of the problem discussed in this paper. The
existence of subcritical solutions, however, does not contradict the coinciding stability thresholds sinceavindorporate
finite amplitude nonlinear interactions in our approach. To be more precisely, for finite amplitude steady solutions we generally
have(N (s), s) pq # 0.
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